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Boundaries

Mojave River drainage basin

Mojave River groundwater basin (approximate)

Morongo groundwater basin (approximate)

Morongo groundwater basin subbasin (approximate)

Mojave Water Agency management area

Mojave Water Agency management area subarea

Perched water table

Military installation

Faults

Location accurate

Approximately located 

Concealed

Water-table contour—Shows elevation of water table (spring 2014). Contour 
    interval, in feet, is variable. Contour is querried where uncertain. Thick contours 
    indicate100-foot contour interval. North American Vertical Datum of 1988 
    (NAVD 88).   

Location approximate 

Location uncertain

Depression—hachures point into depression

Generalized direction of groundwater flow

Well—Top number is abbreviated State well number. Bottom number is 
    elevation of water level, in feet above NAVD 88 (spring 2014).

Water-level record may contain pressure-transducer data—Top number is 
    abbreviated State well number. Bottom number is elevation of water level, in feet 
    above NAVD 88 (spring 2014).

Well with perched water level—Top number is abbreviated State well number. 
    Bottom number is elevation of water level, in feet above NAVD 88 (spring 2014).

Well with historical data shown on a hydrograph

Multi-depth well—Well shown is most shallow and was used to generate water-
    table contours. Top number is abbreviated State well number. Bottom number is 
    elevation of water level, in feet above NAVD 88 (spring 2014).

Multi-depth well with pressure-transducer data—Well shown is most shallow 
    and was used to generate water-table contours.

Westbay® well—Top number is abbreviated State well number. Bottom number is 
    elevation of water level, in feet above NAVD 88 (spring 2014).

Artificial-recharge site and name

Victor Valley Wastewater Reclamation Authority (VVWRA)

Hydrograph—Shows period of record for well. Symbols indicate actual data 
    values from National Water Information System (NWIS). Number represents 
    well identifier. Shaded hydrographs are long-term data. Replaced wells are 
    indicated by        on map.
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Surface water in these basins is minimal and normally is limited to ephemeral flow 
during winter and spring storms and discharge from perennial springs in some areas of the 
Morongo groundwater basin. The major source of surface water is the Mojave River; 
however, its flow is unpredictable and not a dependable source for water supply because 
most of the 100-mile river channel is usually dry. The lack of notable surface-water 
resources has resulted in the use of groundwater as the primary water source for private, 
agricultural, and municipal supply. Because of increasing urbanization, demands on local 
water supplies have created overdraft conditions in some areas of the desert basins. Greatly 
lowered water levels have the potential to induce or renew land subsidence in the Mojave 
River and Morongo groundwater basins. 

MOJAVE RIVER GROUNDWATER BASIN

The Mojave River groundwater basin has an area of approximately 1,400 square miles 
that extends from the San Bernardino and the San Gabriel Mountains in the south to north of 
Harper and Coyote Lakes (dry). The groundwater basin is bordered on the west by Antelope 
Valley and shares its southeastern boundary with the Morongo groundwater basin. For 
water-management purposes, the Mojave River groundwater basin was divided into five 
subareas, partially based on the Mojave River drainage basin boundary:  Oeste, Alto, Este, 
Centro, and Baja (fig. 2).

The primary sources of groundwater recharge in the Mojave River groundwater basin are 
intermittent streamflow, usually during January through March, in the Mojave River and 
sporadic releases of imported water from the California State Water Project (SWP). The basin 
has received SWP water at the Rock Springs recharge site (near well 4N/3W-29E5), southeast 
of Hesperia, since 1994; at the Hodge recharge site (near well 9N/3W-23D2) since 1999; at 
the Lenwood recharge site (near well 9N/3W-1R7) since 1999; at the Yermo/Daggett recharge 
site (near well 9N/1E-20B3) since 2003; and at the Newberry Springs recharge site (near well 
9N/3E-22R7) since March 2006 (Brian Hammer, Mojave Water Agency, written commun., 
April 2006).

MORONGO GROUNDWATER BASIN

The Morongo groundwater basin has an area of about 1,000 square miles and is bounded 
by the Ord and Granite Mountains to the north, the Bullion Mountains to the east, the San 
Bernardino Mountains to the southwest, and the Little San Bernardino Mountains to the south. 
The Morongo groundwater basin contains 17 subbasins: Lucerne, Fry, Johnson, Upper 
Johnson, Means, Pipes, Reche, Emerson, Giant Rock, Copper Mountain, Surprise Spring, 
Deadman, Mesquite, Mainside, Warren, Joshua Tree, and Twentynine Palms (fig. 2). The 
Morongo groundwater basin is recharged by infiltration of flow in ephemeral stream channels 
and, since 1995, by SWP water supplied to ponds at three Hi-Desert Water District recharge 
sites (near wells 1N/5E-36M5 and 1N/5E-34Q1) in the Warren subbasin.
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2014 WATER TABLE

Data for static water levels measured in about 610 wells during March–April 2014 by the 
U.S. Geological Survey (USGS), the Mojave Water Agency (MWA), and other local water 
districts were compiled to construct this regional water-table map. This map shows the 
elevation of the water table and general direction of groundwater movement in and around the 
Mojave River and Morongo groundwater basins. Water levels recorded by the USGS and 
MWA staff were measured and compiled according to the procedures described in the Ground-
water Technical Procedures of the U.S. Geological Survey (Cunningham and Schalk, 2011). 
Water-level data submitted by cooperating local water districts were collected by using 
procedures established by the corresponding agency and were compiled according to the 
procedures described in the Groundwater Technical Procedures of the U.S. Geological Survey 
(Cunningham and Schalk, 2011). All data were compared to historical data for quality-
assurance purposes. Water-level contours from the 2012 water-level map (Teague and others, 
 2014) were used as a guide to interpret and shape the 2014 water-level contours in areas where
 2014 water-level data were not available; these contours are shown as dashed (approximate)
 on this water-table map. Water-level data and contours are shown for the Warren subbasin in
 the Morongo groundwater basin in greater detail on inset A.

The water table is the surface at which the fluid pressure in the pores of a porous medium 
is exactly atmospheric (Freeze and Cherry, 1979). The water table is defined by the level of 
the water surface in wells that just penetrate the top of the water body (Lohman, 1972). The 
water-level measurements used for the water-level contour maps are from wells that have 
more than one perforated interval in the saturated zone of the groundwater basins. Although 
these wells can have different perforated zones, the measured water levels from the zones 
were within about 10 feet (ft) and, therefore, reasonably represent the water-table elevation. 
Water levels measured from the perched-groundwater zones were not used to construct the 
water-level contours.

As part of a groundwater-observation network, the USGS, in cooperation with local 
water agencies, water districts, the military, and private landowners, has constructed many 
multiple-well monitoring sites. These sites consist of a cluster of two or more observation 
wells completed at different depths in a single borehole, each typically screened across a 
20-foot interval (Huff and others, 2002). Data from the shallowest well of a multiple-well site 
were used for the regional water-table maps.

BACKGROUND

The Mojave River and Morongo groundwater basins are approximately 80 miles north 
and 40 miles northeast of Los Angeles, respectively, in the southwestern part of the Mojave 
Desert in southern California (fig. 1). The Mojave River and Morongo groundwater basins 
together have an area of about 2,400 square miles. The climate of these basins is typical of the 
Mojave Desert region of southern California. Most areas of the basin floor receive 4 to 6 
inches of precipitation each year, although annual precipitation can be greater than 40 inches 
in the southern and eastern San Bernardino and the San Gabriel Mountains (Lines, 1996). 
Recharge of the groundwater system from direct infiltration of precipitation is minimal.

GEOHYDROLOGY

The boundaries of the Mojave River and the Morongo groundwater basins generally are 
defined by the contact between the water-bearing, unconsolidated deposits and the 
surrounding and underlying, non-water-bearing, consolidated igneous and metamorphic rocks. 
The groundwater system in the Mojave River Basin consists of two interconnected unconfined 
aquifers—a floodplain aquifer and an underlying and surrounding regional aquifer, which are 
part of the Basin and Range aquifers in southern California. The most productive aquifer is the 
floodplain aquifer, which is composed of permeable, young, river deposits of Holocene age 
and older river deposits of Pleistocene age. This aquifer is as much as 200 ft thick and yields 
most of the groundwater pumped from the Mojave River Basin (Stamos and others, 2001). 
The most widespread aquifer in the area is the regional aquifer; it is composed of unconsoli-
dated older alluvium and fan deposits of Pleistocene to Tertiary age. In some places, the 
regional aquifer also consists of partly consolidated to consolidated sedimentary deposits of 
Tertiary age. The regional aquifer is as much as 1,000 ft thick. Other geologic units, such as 
bedrock and lake deposits, commonly contain groundwater, but they are not considered 
reliable sources of groundwater in the study area.

The Mojave River and Morongo groundwater basins are separated by the Helendale 
Fault, which acts as a barrier to groundwater flow near Lucerne Valley. The regional aquifer in 
the Morongo groundwater basin consists of continental deposits of Quaternary and Tertiary 
age that are as much as 10,000 ft deep (Moyle, 1984). For a more comprehensive description 
of the geohydrology of the groundwater basins, the reader is referred to Stamos and others 
(2001).

Perched groundwater has been identified in four areas of the Mojave River and Morongo 
groundwater basins. Perched groundwater is unconfined groundwater separated from an 
underlying body of groundwater by an unsaturated zone (Lohman, 1972). The approximate 
areas of perched groundwater are near El Mirage Lake (dry) and northeast of the city of 
Adelanto in the Mojave River groundwater basin and the Lucerne Valley (Jill Densmore, U.S. 
Geological Survey, written commun., 1999) and Mesquite (dry) Lake (Mendez and 
Christensen, 1997) in the Morongo groundwater basin.

GROUNDWATER MOVEMENT

Groundwater flows perpendicular to water-level contours from areas of higher hydraulic 
head to areas of lower hydraulic head (downgradient). Water-table contours in the vicinity of 
faults indicate that some faults in the study area are barriers to groundwater flow. The barrier 
effect of the faults is probably caused by compaction and deformation of water-bearing 
deposits immediately next to the faults and by cementation of the fault zone by mineral 
deposits from groundwater (Londquist and Martin, 1991).

The southern part of the Helendale Fault, near the town of Lucerne, is an effective barrier 
to subsurface flow. The water-table map indicates that the direction of groundwater movement 
on the east side of the Helendale Fault is toward Lucerne (dry) Lake; therefore, groundwater 
east of the Helendale Fault in this area is considered to be in the Morongo groundwater basin. 
Groundwater-flow patterns in the Lucerne Lake area have changed little since 1916–17, the 
time of the first available data (Schaefer, 1979). West of the Helendale Fault, groundwater is 
considered to be in the Este subarea of the Mojave River groundwater basin, and the water-
table gradient is relatively flat.

MOJAVE RIVER GROUNDWATER BASIN

In most subareas of the Mojave River groundwater basin, groundwater generally flows 
northward and eastward. In the Este subarea, however, the flow is northward and westward. 
The amount of subsurface flow across the boundary between the Alto and Este subareas was 
estimated by Stamos and Predmore (1995). Hardt (1971) estimated that the transmissivity of 
the aquifer materials near the boundary of the Alto and Este subareas ranged from 5,000 to 
10,000 gallons per day per foot. The width of the boundary is about 4 miles, and the hydraulic 
gradient was determined from the water-table map in 1992 (Stamos and Predmore, 1995) to be 
0.0025 foot per foot. On the basis of these estimates, the approximate subsurface flow in 1992 
from the Este subarea to the Alto subarea was 300 to 600 acre-feet per year. Available data in 
the southwestern part of the Mojave River groundwater basin were insufficient to estimate the 
quantity of flow across the Oeste/Alto subarea boundary.

The water-table contours indicate that subsurface flow crosses the northern part of the 
Helendale Fault from the Alto subarea to the Centro subarea along the Mojave River. Water-
level data from multiple-well monitoring sites, as well as historical data, indicate that this fault 
 restricts subsurface flow in the regional aquifer, but not in the overlying alluvial aquifer
 (Hardt, 1971). Groundwater moving into the Centro subarea flows either to the north, away
 from the Mojave River toward Harper (dry) Lake, or to the northeast through a narrow gap in
 the consolidated rocks on the south side of Iron Mountain. Steep water-level gradients
 between the Helendale Fault and Iron Mountain indicate the probable presence of subsurface
 faults or shallow geologic structures that impede subsurface flow to Harper Lake. On the east
 side of Iron Mountain, groundwater flows from the Mojave River northwest to Harper Lake
 and also northeast toward the city of Barstow.

Groundwater from the Centro subarea crosses the Camp Rock-Harper Lake fault zone 
and enters the Baja subarea east of Barstow. In the fault zone, the water-table gradient is 
marked by abrupt, step-like changes in the water-table gradient, decreasing in elevation as 
water flows eastward. Water-level data from multiple-well monitoring sites indicate that the 

fault zone impedes groundwater movement both in the shallow alluvial aquifer and in the 
underlying regional aquifer. East of the Camp Rock-Harper Lake fault zone, the water-table 
gradient is relatively flat where groundwater flows northeastward through the Baja subarea. 
As groundwater enters the middle of the Baja subarea, however, it is impeded by the Calico-
Newberry Fault, as indicated by more than a 50-foot drop in the water table on the west side 
of the fault. Water-level data from multiple-well monitoring sites on both sides of the Calico-
Newberry Fault indicate that, as in the Camp Rock-Harper Lake fault zone, groundwater flow
is impeded in both aquifers.

Subsurface flow through the Baja subarea is affected by low-permeability deposits 
present at shallow depths in two locations. Near Camp Cady, fine-grained, unconsolidated 
deposits near the surface that are associated with ancient Manix Lake (California Department 
of Water Resources, 1967) cause an abrupt change in the water-table gradient as groundwater 
flows toward Afton Canyon. At Afton Canyon, low-permeability deposits at shallow depths 
below the Mojave River restrict subsurface flow, forcing groundwater to the surface before it 
exits the Mojave River groundwater basin.

MORONGO GROUNDWATER BASIN

In the Morongo groundwater basin, groundwater generally flows eastward and northward 
from the San Bernardino Mountains. From Pipes Wash, flow is eastward toward localized 
depressions in the water table at Deadman and Mesquite (dry) Lakes. Groundwater pumping 
by the U.S. Marine Corps Air/Ground Combat Center in the Surprise Spring subbasin has 
created a groundwater depression that has changed the direction of groundwater movement 
locally. From washes along the northern front of the San Bernardino Mountains, flow is 
northeastward to the pumping depression in the Lucerne subbasin and to the Soggy, Melville, 
and Means (dry) Lakes. As groundwater moves eastward through the Morongo Basin, 
subsurface flow across faults is impeded, resulting in a step-like decrease in water levels. 
Groundwater leaves the basin across the Mesquite Fault in the southeastern part of the basin 
and, ultimately, moves eastward.

Other patterns indicated by the contour lines and supported by previous findings are 
(1) northward flow from the Little San Bernardino Mountains to the Pinto Mountain Fault 
(Lewis, 1972), (2) minor flow southward from the San Bernardino Mountains into Warren 
subbasin (Lewis, 1972), and (3) southward flow into Lucerne subbasin from the Ord Moun-
tains (Schaefer, 1979). Rates of groundwater movement in areas of the basin unaffected by 
pumping are low—generally a few feet per year (French, 1978).

Groundwater depressions are present in the areas of the greatest historical and current 
pumpage:  Warren, Lucerne, and Surprise Spring subbasins. Construction of water-table 
contours in Warren subbasin was difficult because water levels varied considerably. The 
variability could be due to the presence of faults that separate the area into small isolated 
compartments, incomplete recovery of the water table in the public-supply wells at the time of 
measurement, even though pumping had ceased 24 hours prior to measurement, or both.

Perched water in the Mainside subbasin (under Mesquite Dry Lake) is approximately 130 
ft above the regional water table. Movement of this water seems to be southeastward, similar 
to that of the regional groundwater below it. The probable source of this perched water is 
spreading ponds that are used for sewage-water treatment.

LONG-TERM AND SHORT-TERM WATER-LEVEL CHANGES 

Historical water-level data from the National Water Information System (NWIS) database 
were used in conjunction with data collected for this study to construct 35 water-level hydro-
graphs to show long-term (1930–2014) and short-term (1990–2014) water-level changes in the 
Mojave River and Morongo groundwater basins. Water-level changes between the spring of 
2012 and spring of 2014 were determined by comparing water levels measured in the same 
well during both periods.

Long-term (1930–2014) water-level changes are depicted by 25 water-level hydrographs 
(shaded) for the Mojave River and the Morongo groundwater basins. Wells for three hydro-
graphs (wells 5N/5W-22E6, 11N/4W-29R1, and 11N/4W-30N1) were destroyed or were 
unable to be measured in 2014, but are shown to provide information from previous versions 
of this report.

Data from more than one well were combined in hydrographs to show water-level 
changes during long periods in particular subareas. Combining data from multiple wells on a 
single hydrograph was done when a well went dry as a result of a decline in the water table or 
when it could no longer be measured, and data from a nearby well were used to continue the 
record. Data from the different wells are shown by using different colored data points on the 
hydrographs.

MOJAVE RIVER GROUNDWATER BASIN

The long-term hydrographs for the Mojave River groundwater basin showed that water 
levels east of the Mojave River in the Alto subarea have declined almost 50 ft since 1917 (well 
4N/3W-1M1) and more than 60 ft in the eastern part of the Harper Lake region of the Centro 
subarea since the 1930s (wells 11N/3W-28R1, -28R2). Water levels southwest of Harper Lake 
(dry) in the Centro subarea (well 10N/4W-10D1) have increased from 2001 to 2014 because 
of a sustained reduction in groundwater pumping since the early 1990s (Mojave Water Agency 
Watermaster, 2015). In the Baja subarea, water levels have declined more than 105 ft since the 
late 1940s (wells 9N/2E-20Q1, -20K1, and -20G3). 

Twelve short-term hydrographs were constructed from data collected in the Mojave River 
groundwater basin between 1990 and 2014. Most hydrographs show data from wells along the 
Mojave River and record the effects of seasonal recharge and discharge along the river; 
artificial recharge; and evapotranspiration, which is minimal during the winter months. These 
short-term hydrographs show that there has been sporadic recharge to the floodplain aquifer 
from intermittent stormflows in the Mojave River in the Alto (wells 4N/3W-19G5, -31L9, and 
4N/4W-01C5) and Centro (wells 9N/2W-02E1, -06P2, and 9N/3W-23F4) subareas since 1992, 
but recharge from stormflows in the Baja (wells 9N/1E-10Q4 and 10N/3E-27J4) subarea has 
been minimal. In the Alto transition zone, the groundwater levels near well 7N/5W-23R3 have 
increased slightly as a result of recharge from treated wastewater that is discharged by the 
Victor Valley Wastewater Reclamation Authority (VVWRA) about 4 miles upstream. 

MORONGO GROUNDWATER BASIN

All of the long-term hydrographs for the Morongo groundwater basin showed varying 
declines in water levels since the wells were first measured. Water levels have declined more 
than 45 ft in the middle of the Joshua Tree subbasin since the late 1950s (well 1N/7E-32C1), 
about 55 ft in part of the Reche subbasin since 1963 (well 2N/6E-18B1), about 100 ft near 
Lucerne Lake (dry) in the Lucerne subbasin since the early 1950s (well 5N/1W-25G1), and 
about 155 ft in the eastern part of the Surprise Spring subbasin since 1952 (well 2N/7E-2C1). 
Between 1951 and the early 1990s, water levels in the Warren subbasin (wells 1N/5E-36K1 
and -36K2) decreased by as much as 300 ft, but have risen substantially since 1994 in 
response to artificial recharge with imported water through the use of ponds at the Hi-Desert 
Water District recharge site (Stamos and others, 2013; fig. 3).

WATER-LEVEL CHANGES 2012–2014

Water-level data exist for 479 wells in the Mojave River and Morongo groundwater 
basins for 2012 and 2014. Overall, water levels in wells along the Mojave River in the Alto 
subarea and the Alto transition zone have remained constant (Teague and others, 2016), 
because of the infiltration resulting from surface flow through the Lower Narrows (10261500) 
and the treated wastewater discharged by the VVWRA. Data from the Centro and Baja 
subareas showed that most wells had groundwater-level decreases. A small pumping depres-
sion (not shown on the map because of scale), created by efforts to pump and treat contami-
nated groundwater near Hinkley in the Centro subarea, likely decreases flow of groundwater 
to the north from Hinkley (Dennis Maslonkowski, CH2MHill, written commun., Jan. 28, 
2013). In the Baja subarea, water levels declined between 0.5 and 5 ft in most wells. Several 
wells in the Baja subarea north of the Mojave River showed water-level increases. These 
increases are likely due to a reduction in pumpage in that area since 1994 (Mojave Water 
Agency Watermaster, 1995; Mojave Water Agency Watermaster, 2015).  

A majority of the wells in the Morongo groundwater basin had water levels within 5 ft of 
those recorded in 2012. In the Deadman, Mesquite, and Mainside subbasins, the water-level 
increases can be attributed either to fluctuations in pumpage or to a possible reduction in 
pumpage (Li and Martin, 2011). The greatest water-level increases continue to be observed in 
the Warren subbasin, where artificial-recharge operations in Yucca Valley (fig. 3) and a 
reduction in groundwater pumpage  (Stamos and others, 2013) have caused water levels to rise 
more than 250 ft (well 1N/5E-36K2) since 1994.
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Figure 2.     The Mojave Water Agency subareas and the Morongo groundwater subbasins of the 
Mojave River and Morongo groundwater basins, respectively.

Yucca
Valley

3,
00

0

3,100

3,
12

5

3,
02

5

3,
05

0

3,050

3,100 3,025 2,500

? ?

?

?

?

?

36K2
3,055

10D3
3,531

33J1
3,149

28N1
3,526

34N3
3,109

3D1
3,117

34Q1
3,105 34R2

3,104

34Q2
3,099 35P1

3,074

34P4
3,099

35K1
3,048 36M6

3,053

36M4
3,086

36M3
3,061

36L1
3,015

36G4
3,067

36H2
3,036

32G1
2,832

36K3
3,042

36K1

31C1
3,077

29R3
2,917

29J3
2,935

34D5
2,494

34K3
3,108

?

?

Hi-Desert
Site 3

Hi-Desert
Site 7A/B

Hi-Desert
Site 6

Joshua
Basin

62

247

Inset A

Cooper
Mountain

Deadman

Emerson

Fry
Giant
Rock

Johnson

Joshua
Tree

Lucerne

Mainside

M
eans

MesquitePipes

Reche

Surprise

Spring

Twentynine
Palms

Upper
Johnson

Warren

Alto
subarea

Alto transition
zone subarea

Baja
subarea

Centro
subarea

Este
subarea

Oeste
subarea

116°116°30'117°117°30'

35°

34°
30'

0 10 20 MILES5

0 10 20 KILOMETERS5

Base modified from U.S. Geological Survey and other digital data, various scales;
Albers Equal Area projection; North American Datum of 1983

Mojave River groundwater basin

EXPLANATION

Mojave Rive
r

15 215

15

40

Morongo groundwater subbasin
   and identifier

Mojave Water Agency subarea
   and identifier

15

15

Pacific
Ocean

Pacific Ocean Los
Angeles

 
 

Mojave Water Agency
management area MAP

AREA

ANTELOPE
VALLEY

ORANGECO

100 MILES500

100 KILOMETERS500

AR
IZ

ON
A

MEXICO

CALIFORNIA

SAN
BERNARDINO

CO

C
A

L
IFO

R
N

IA

NEVADA

EXPLANATION

Mojave River 
groundwater basin

Morongo groundwater 
basin

Mojave Desert

Los
Angeles

San 
Diego

INYO CO

KERN CO

SANTA
BARBARA

CO

VENTURA
CO

SAN DIEGO
CO

IMPERIAL
CO

RIVERSIDE CO

SAN
BERNARDINO

CO

SAN LUIS OBISPO
CO

LOS
ANGELES

CO

Base modified from U.S. Geological Survey and other Federal and state digital 
data, various scales; Albers Equal Area Projection; North American Datum of 1983

Mojave River
drainage basin

boundary

7525

25 75

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply 
endorsement by the U.S. Government.

Dimensional calibration may vary between electronic plotters and between X and Y directions on the same 
plotter, and paper may change size due to atmospheric conditions; therefore, scale and proportions may not 
be true on plots of this map.

For sale by U.S. Geological Survey, Information Services, Box 25286, Federal Center, Denver, CO  80225, 
1–888–ASK–USGS.

Digital files available at http://dx.doi.org/10.3133/ofr20161105 or http://pubs.usgs.gov/ofr20161105. Project 
information available at http://ca.water.usgs.gov/mojave/mojave-2014-water-levels.html. 

Suggested citation:  Teague, N.F., Stamos, C.L., House, S.F., and Clark, D.A., 2016, Regional water table (2014) in 
the Mojave River and Morongo groundwater basins, southwestern Mojave Desert, California, 2016: U.S. 
Geological Open-File Report 2016–1105, 1 sheet, scale 1:170,000, http://dx.doi.org/10.3133/ofr20161105.ISSN 2329-132X (online)

Faults modified from Schaefer, 1979; Bortugno, 1986; Londquist 
and Martin,1991; Cox and Wilshire, 1993; J.C. Matti and 
G.I. Dixon, U.S. Geological Survey, written commun., 1994; 
Nishikawa and others, 2003
GIS database by Sally F. House; digital cartography and 
cartographic production by Donna L. Knifong




